Characterization and optimization of forelimb autotransplantation in a swine model (*Sus scrofa*)

Carole Y. Villamaria MD, Anton Fries MD, JR Spencer RVT, Michael R. Davis MD

Background: Every year, an estimated 7 million people in the United States need vascularized composite tissue reconstruction secondary to surgical excision of tumors, accidents, and congenital malformations.\(^1\) Limb amputees alone comprise 1.6 million of these individuals. The evolution of reconstructive surgery has become ever more valuable in the face of the current conflicts of Iraq and Afghanistan, where servicemen and women that would have otherwise lost their lives now present with more complex wounding patterns of the extremities. While lower extremity prostheses have allowed many individuals to regain their independence and mobility, upper extremity prostheses have not, and consequently has been the catalyst for the surge of vascularized composite allotransplantation in the form of hand transplantation.

Methods: Female swine (70-90kg) (n=10; 3 model development, 7 experimental) undergo surgical amputation of left mid forelimb after dissection and division of tendons, nerves, artery, and veins. Subsequently, the limb is re-implanted. The bones are reapproximated by 2 metal plates and the tendons and neurovascular bundles are reanastomosed using microvascular techniques. Upon completion of implantation, the forelimb is placed in a fiberglass cast and the animal is survived for 14 days.

Results: We have completed the 3 (nonsurvivor) model development animals. Two (2) survivor animals from the experimental group have been completed. Patency of venous and arterial anastomoses were confirmed post operatively on both animals. One of the two survivor animals survived for 24hrs prior to euthanasia secondary to marked distress; transplanted limb appears to have had adequate perfusion, no necrosis noted on skin, vessels were patent on exam, animal did not attempt to mobilize. The other survivor animal was noted to have stopped breathing 5 hours post operatively in its kennel. Modifications in analgesia and post operative care will be implemented based on outcomes from these 2 survivor animals. There are 5 additional animals in the experimental group.

Conclusion: Currently, the use of immunosuppression therapy is necessary for graft survival. The use of multiple immunosuppressive drugs however, can be avoided through the study and use of immunomodulators—agents that modulate the immune system. However, prior to the study of the effects of immunomodulators on limb transplantation, there needs to be an animal model in place that validates the feasibility of limb transplantation. The initial steps of characterizing and optimizing the autotransplantation of the forelimb in a large animal as proposed by this model will provide a platform through which we can further study the effects of certain immunomodulators in an allotransplant model, with hopes to decrease or eliminate the need for multiple immunosuppressive therapies in limb transplantation. Validating these results in an animal model will facilitate translation into the clinical setting.